Thursday, May 19, 2011

I.V. Fluids...What nurses need to know

TYPE OF FLUID DEFINITION EXAMPLES
Isotonic
  • 0.9% sodium chloride
  • lactated Ringer's solution
  • 5% dextrose in water
  • Ringer's solution
Hypotonic
Hypertonic
It surprised me to put D5W in the list of examples for isotonic solutions.



Figure. No caption a... - Click to enlarge in new window

Water water everywhere

* serves as the transport system for nutrients, gases, and wastes in and out of the cells.
* facilitates the elimination of wastes through the kidneys, gastrointestinal (GI) tract, skin, and lungs.
* regulates body temperature through evaporation from the skin.

Two main fluid compartments

The intracellular fluid compartment, which consists of fluid contained within all of our body cells, is the larger of the two compartments. The extracellular fluid compartment contains all the fluids outside the cells and is further divided into two major subcomponents: intravascular fluid contained in blood vessels and interstitial fluid found in the tissue spaces. The intracellular, intravascular, and interstitial spaces are the major fluid compartments in the body.

How much of you is water?

Figure. Two basic fl... - Click to enlarge in new window
Figure. Two basic fluid compartments
Changes in the level of solute concentration influence the movement of water between the fluid compartments. The normal osmolality for plasma and other body fluids varies from 270 to 300 mOsm/L. Optimal body function occurs when the osmolality of fluids in all the body compartments is close to 300 mOsm/L. When body fluids are fairly equivalent in this particle concentration, they're said to be isotonic.

Crystalloids vs. colloids

One of the methods for treating fluid and electrolyte alterations is the infusion of I.V. solutions, which have distinctive differences in composition that affect how the body reacts to and utilizes them. When administering I.V. therapy, you need to understand the nature of the solution being initiated and how it will affect your patient's condition.
I.V. solutions for fluid replacement may be placed in two general categories: colloids and crystalloids. Colloids contain large molecules that don't pass through semipermeable membranes. When infused, they remain in the intravascular compartment and expand intravascular volume by drawing fluid from extravascular spaces via their higher oncotic pressure. We'll discuss colloids in detail later.
Crystalloids are solutes capable of crystallization that are easily mixed and dissolved in a solution. The solutes may be electrolytes or nonelectrolytes, such as dextrose.
Crystalloid solutions contain small molecules that flow easily across semipermeable membranes, allowing for transfer from the bloodstream into the cells and body tissues. This may increase fluid volume in both the interstitial and intravascular spaces.

ISOTONIC FLUIDS

A solution is isotonic when the concentration of dissolved particles is similar to that of plasma. Isotonic solutions have an osmolality of 250 to 375 mOsm/L.7 With osmotic pressure constant both inside and outside the cells, the fluid in each compartment remains within its compartment (no shift occurs) and cells neither shrink nor swell. Because isotonic solutions have the same concentration of solutes as plasma, infused isotonic solution doesn't move into cells. Rather, it remains within the extracellular fluid compartment and is distributed between the intravascular and interstitial spaces, thus increasing intravascular volume.6 Types of isotonic solutions include 0.9% sodium chloride (0.9% NaCl), lactated Ringer's solution, 5% dextrose in water (D5W), and Ringer's solution.
LR is used to replace GI tract fluid losses, fistula drainage, and fluid losses due to burns and trauma. It's also given to patients experiencing acute blood loss or hypovolemia due to third-space fluid shifts.6 Both 0.9% sodium chloride and LR may be used in many clinical situations, but patients requiring electrolyte replacement (such as surgical or burn patients) will benefit more from an infusion of LR.6
D5W provides free water: free, unbound water molecules small enough to pass through membrane pores to the intracellular and extracellular spaces. This smaller size allows the molecules to pass more freely between compartments, thus expanding both compartments simultaneously.6 The free water initially dilutes the osmolality of the extracellular fluid; once the cell has used the dextrose, the remaining saline and electrolytes are dispersed as an isotonic electrolyte solution, providing additional hydration for the extracellular fluid compartment. Dextrose solutions also provide free water for the kidneys, aiding renal excretion of solutes. Because it provides free water following metabolism, D5W is also considered a hypotonic solution.6
D5W shouldn't be used in isolation to treat fluid volume deficit because it dilutes plasma electrolyte concentrations. It's also contraindicated in these clinical circumstances:
* for resuscitation, because the solution won't remain in the intravascular space.

Nursing considerations for isotonic solutions

Frequently assess the patient's response to I.V. therapy, monitoring for signs and symptoms of hypervolemia, such as hypertension, bounding pulse, pulmonary crackles, dyspnea/shortness of breath, peripheral edema, jugular venous distention (JVD), and extra heart sounds, such as S3. Monitor intake and output, hematocrit, and hemoglobin. Elevate the head of bed at 35 to 45 degrees, unless contraindicated. If edema is present, elevate the patient's legs. Note if the edema is pitting or nonpitting and grade pitting edema. For an example, see Checking for pitting edema.

HYPOTONIC FLUIDS

Figure. Checking for... - Click to enlarge in new window
Figure. Checking for pitting edema

Nursing considerations for hypotonic solutions

HYPERTONIC SOLUTIONS

Twenty percent dextrose in water (D20W) is an osmotic diuretic, meaning the fluid shift it causes between various compartments promotes diuresis.

Nursing considerations for hypertonic solutions

Maintain vigilance when administering hypertonic saline solutions because of their potential for causing intravascular fluid volume overload and pulmonary edema.2 Hypertonic sodium chloride solutions should be administered only in high acuity areas with constant nursing surveillance for potential complications. Hypertonic sodium chloride shouldn't be given for an indefinite period of time. Prescriptions for their use should state the specific hypertonic fluid to be infused, the total volume to be infused and infusion rate, or the length of time to continue the infusion. As an additional precaution, many institutions store hypertonic sodium chloride solutions apart from regular floor stock I.V. fluids, so they must be ordered separately from the pharmacy.
Hypertonic solutions shouldn't be given to patients with cardiac or renal conditions who are dehydrated. These solutions affect renal filtration mechanisms and can cause hypervolemia. Patients with conditions causing cellular dehydration, such as diabetic ketoacidosis shouldn't be given hypertonic solutions, because it will exacerbate the condition.

Why colloid solutions stay put

Unlike crystalloids, colloids contain molecules too large to pass through semipermeable membranes, such as capillary walls. Because they remain in the intravascular compartment, they're also known as volume expanders or plasma expanders. Examples include albumin, dextrans, and hydroxyethylstarches.

Nursing considerations for colloids

Use best practices for optimal outcomes

No matter what I.V. fluid you're administering, follow best practices to ensure optimal response to therapy and prevent complications. For example, assess and document baseline vital signs, heart and lung sounds, and fluid volume status.
As with any drug, make sure you're familiar with the type of fluid being administered, the rate and duration of the infusion, the fluid's effects on the body, and potential adverse reactions. Throughout therapy, monitor the patient's response to treatment, watching closely for any signs and symptoms of hypervolemia or hypovolemia. Monitor lab values to assess kidney function and fluid status. Regularly check the venous access site for signs of infiltration, inflammation, infection, or thrombosis.
Educate the patient and the family about the prescribed therapy, including potential complications and symptoms that require immediate attention.

Crucial balancing act

Maintaining fluid and electrolyte balance is essential for life. Future articles in this series will discuss how to assess for specific imbalances and intervene appropriately.

REFERENCES

No comments: